网站地图 加入收藏 中文 English
 
首页 中心概况 组织机构 研究队伍 科学研究 人才培养 交流合作 支撑服务 人才招聘 下载专区 联系我们
当前位置:首页 - 科学研究 - 学术论文
学术论文
Wang HW, Ramey VH, Westermann S, Leschziner AE, Welburn JPI, Nakajima Y, Drubin DG, Barnes G and Nogales E. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. NATURE STRUCTURAL & MOLECULAR BIOLOGY 14(8):721-726, 2007
发布时间:2011-11-17作者:王宏伟关键字:

Abstract
The Dam1 kinetochore complex is essential for chromosome segregation in budding yeast. This ten-protein complex self-assembles around microtubules, forming ring-like structures that move with depolymerizing microtubule ends, a mechanism with implications for cellular function. Here we used EM-based single-particle and helical analyses to define the architecture of the Dam1 complex at 30-A resolution and the self-assembly mechanism. Ring oligomerization seems to be facilitated by a conformational change upon binding to microtubules, suggesting that the Dam1 ring is not preformed, but self-assembles around kinetochore microtubules. The C terminus of the Dam1p protein, where most of the Aurora kinase Ipl1 phosphorylation sites reside, is in a strategic location to affect oligomerization and interactions with the microtubule. One of Ipl1's roles might be to fine-tune the coupling of the microtubule interaction with the conformational change required for oligomerization, with phosphorylation resulting in ring breakdown.




版权所有 生命科学联合中心 京ICP备15006448号-5