Web Map For Collection 中文 English
 
Home About us Organization Principal Investigators Research Education& Training Academic activities Facilities Careers Downloads Contact us
Location:Home - Principal Investigators
Qiang Guo

 

 

Qiang Guo

 

Email: guo.qiangatpkudotedudotcn

 

Research Area:

We are an in situ Structural Biology lab, we study Cellular Architecture—how subcellular compartments build up a functional cell, and Macromolecule Sociology—what’s the relationship between macromolecules and organelles.

Cryo-electron tomography (Cryo-ET) is a cutting-edge technique that allows the study of protein function in their physiological cellular context and, via subtomogram averaging technique, at molecular resolution. The development of correlative cryo-light and electron microscopy (CLEM) and focused ion beam (FIB) allows precise thinning of vitrified cells to target the region of interest. Based on these state-of-the-art techniques our research focus is:

1. To capture molecular snapshots of fundamental cellular processes in their physiological context.

2. To better understand the structural mechanisms of human diseases, especially aging related degenerative diseases.

3. To optimize a practical workflow for high resolution in situ structural biology.

 

Selected Publications:

1.    Yasuda, S., Tsuchiya, H., Kaiho, A., Guo, Q., Ikeuchi, K., Endo, A., Arai, N., Ohtake, F., Murata, S., Inada, T., et al. (2020). Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300.

2.    Guo, Q., Bin, H., Cheng, J., Seefelder, M., Engler, T., Pfeifer, G., Oeckl, P., Otto, M., Moser, F., Maurer, M., Pautsch, A., Baumeister, W., Fernandez-Busnadiego, R., Kochanek, S. (2018). The cryo-electron microscopy structure of huntingtin. Nature 555, 117–120.

3.    Guo, Q., Lehmer, C., Martinez-Sanchez, A., Rudack, T., Beck, F., Hartmann, H., Hipp, M.S., Hartl, F.U., Edbauer, D., Baumeister, W., Fernandez-Busnadiego, R. (2018) In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell 172, 696-705.e612.

4.    Zhao, Y., Zeng, X., Guo, Q., and Xu, M. (2018). An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification. Bioinformatics 34, i227–i236

5.    Li, Z., Guo, Q., Zheng, L., Ji, Y., Xie, Y.T., Lai, D.H., Lun, Z.R., Suo, X., and Gao, N. (2017). Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii. Cell Res 27, 1275-1288.

6.    Feng, B., Mandava, CS., Guo, Q., Wang, J., Cao, W., et al. (2014) Structural and Functional Insights into the Mode of Action of a Universally Conserved Obg GTPase. PLoS Biol 12(5): e1001866.

7.    Yang, Z., Guo, Q., Goto, S., Chen, Y., Li, N., Muto, A., Himeno, H., Deng, H., Lei, J., and Gao, N. (2014). Characterization of the in vivo 30S ribosomal assembly intermediates reveals essential role of S5 and location of unprocessed ends of the 17S rRNA. Protein Cell 5, 394-407.

8.    Li, N., Chen, Y., Guo, Q., Zhang, Y., Yuan, Y., Ma, C., Deng, H., Lei, J., and Gao, N. (2013). Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res 41, 7073-7083.

9.    Guo, Q., Goto, S., Chen, Y., Feng, B., Xu, Y., Muto, A., Himeno, H., Deng, H., Lei, J., and Gao, N. (2013). Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res 41, 2609-2620. 

10. Guo, Q., Yuan, Y., Xu, Y., Feng, B., Liu, L., Chen, K., Sun, M., Yang, Z., Lei, J., and Gao, N. (2011). Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 108, 13100-13105.

 

All right reserved Center For Life Sciences