参考文献
1.Yu, T., Cui, H., Li, J.C., Luo, Y., Jiang, G., Zhao, H. (2023). Enzyme function prediction using contrastive learning. Science 379, 1358-1363.
2.Huang, J., Lin, Q., Fei, H., He, Z., Xu, H., Li, Y., Qu, K., Han, P., Gao, Q., Li, B., et al. (2023). Discovery of deaminase functions by structure-based protein clustering. Cell 186, 3182-3195.
3.Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123-1130.
4.Wang, S., Xie, J., Pei, J., Lai, L. (2023). CavityPlus 2022 Update: An Integrated Platform for Comprehensive Protein Cavity Detection and Property Analyses with User-friendly Tools and Cavity Databases. Journal of Molecular Biology 435, 168141.
5.Yeturu, K., Chandra, N. (2008). PocketMatch: A new algorithm to compare binding sites in protein structures. BMC Bioinformatics 9, 543.
6.Yuan, Y., Pei, J., Lai, L. (2011). LigBuilder 2: A Practical de Novo Drug Design Approach. J. Chem. Inf. Model. 51, 1083-1091.
7.Li, Y., Pei, J., Lai, L. (2021). Structure-based de novo drug design using 3D deep generative models. Chem. Sci. 12, 13664-13675.
8.Xie, W., Zhang, J., Xie, Q., Gong, C., Ren, Y., Xie, J., Sun, Q., Xu, Y., Lai, L., Pei, J. (2025). Accelerating discovery of bioactive ligands with pharmacophore-informed generative models. Nat. Commun. 16, 2391.
9.Zhu, J., Gu, Z., Pei, J., Lai, L. (2024). DiffBindFR: an SE(3) equivariant network for flexible protein–ligand docking. Chem. Sci. 15, 7926-7942.
10.Gu, Z., Luo, X., Chen, J., Deng, M., Lai, L. (2023). Hierarchical graph transformer with contrastive learning for protein function prediction. Bioinformatics 39, btad410.
11.Liu, J., Guo, Z., You, H., Zhang, C., Lai, L. (2024). All-Atom Protein Sequence Design Based on Geometric Deep Learning. Angew. Chem. Int. Ed. 63, e202411461.
12.Wang, F., Wang, Y., Feng, L., Zhang, C., Lai, L. (2024). Target-Specific De Novo Peptide Binder Design with DiffPepBuilder. J. Chem. Inf. Model. 64, 9135-9149.
13.Zhang, C., Wang, F., Zhang, T., Yang, Y., Wang, L., Zhang, X., Lai, L. (2025). De Novo Design of Cyclic Peptide Binders Based on Fragment Docking and Assembling. J. Chem. Inf. Model. 65, 4206-4218.
14.Lin, K., Xu, Y., Pei, J., Lai, L. (2020). Automatic retrosynthetic route planning using template-free models. Chem. Sci. 11, 3355-3364.
15.Li, J., Lin, K., Pei, J., Lai, L. (2024). Challenging Complexity with Simplicity: Rethinking the Role of Single-Step Models in Computer-Aided Synthesis Planning. J. Chem. Inf. Model. 64, 5470-5479.
16.Wang, Z., Lin, K., Pei, J., Lai, L. (2025). Reacon: a template- and cluster-based framework for reaction condition prediction. Chem. Sci. 16, 854-866.
17.Sun, Q., Wang, H., Xie, J., Wang, L., Mu, J., Li, J., Ren, Y., Lai, L. (2025). Computer-Aided Drug Discovery for Undruggable Targets. Chem. Rev. 125, 6309-6365.