1 Xu, R., Li, C., Liu, X. & Gao, S. Insights into epigenetic patterns in mammalian early embryos. Protein Cell12, 7-28, doi:10.1007/s13238-020-00757-z (2021).
2 Xia, W. & Xie, W. Rebooting the Epigenomes during Mammalian Early Embryogenesis. Stem Cell Reports 15, 1158-1175, doi:10.1016/j.stemcr.2020.09.005 (2020).
3 Zernicka-Goetz, M., Morris, S. A. & Bruce, A. W. Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10, 467-477, doi:10.1038/nrg2564 (2009).
4 Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548-552, doi:10.1038/nature19360 (2016).
5 Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558-562, doi:10.1038/nature19362 (2016).
6 Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553-557, doi:10.1038/nature19361 (2016).
7 Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods9, 215-216, doi:10.1038/nmeth.1906 (2012).
8 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell177, 1888-1902 e1821, doi:10.1016/j.cell.2019.05.031 (2019).
9 Zhang, B. et al. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nat Biotechnol40, 1220-1230, doi:10.1038/s41587-022-01250-0 (2022).