科研进展

PNAS|林杰课题组揭示复杂环境下转录凝聚物动力学和基因表达之间的潜在联系

2024-03-20    点击:
图片

◆ ◆ ◆ ◆

PNAS|林杰课题组揭示复杂环境下转录凝聚物动力学和基因表达之间的潜在联系




生物分子凝聚物 (biomolecular condensate) 是具有诸多生物功能的无膜细胞器[1],其中尤为重要的例子是包含有转录因子、RNA聚合酶的转录凝聚物[2]。这些凝聚物对于基因表达调控具有重要作用。生物分子凝聚物通常被认为是通过液液相分离形成[3],然而实际生物分子凝聚物所处的环境往往不是简单的液态,而是弹性介质,例如细胞核内的染色质。实验和理论表明,弹性介质会对凝聚物的生长和粗化产生影响[4-7]。此外,细胞中无处不在的耗能过程使得整个系统处于非平衡态。例如,转录过程产生的RNA会因为静电相互作用使得转录凝聚物自发溶解,使系统偏离朝向热力学平衡态的方向演化[8]。这又使得生物分子凝聚物的动力学与传统平衡态相分离理论有很大不同。

为了探究染色质包围下的转录凝聚物的非平衡态动力学,北京大学前沿交叉学科研究院,定量生物学中心/北大-清华生命科学联合中心的林杰课题组,将转录凝聚物所处的环境近似成具有随机弹性模量的弹性介质(图 1)。通过非平衡态热力学的方法模拟转录凝聚物的动态演化,并引入RNA导致的转录凝聚物自发溶解过程。作者发现转录凝聚物表现出三种生长动力学。周围弹性模量较小的凝聚物在溶解后可以立刻生长,可能对应组成型表达基因 (constitutively-expressed genes);周围弹性模量适中的凝聚物在溶解后只能断断续续地生长,可能对应转录爆发基因 (transcriptional-bursting genes);周围弹性模量很大的凝聚物始终无法生长,可能对应静默基因 (silenced genes)。作者进一步根据在不同凝聚物成核半径下三种动力学的分界绘制了相图(图 2)。此外,对于转录爆发对应的凝聚物,作者发现爆发频率 (burst frequency) 与凝聚物周围弹性模量之间呈现指数函数关系,并结合转录组层面小鼠胚胎成纤维细胞的转录爆发频率分布[9],推断出细胞核内弹性模量满足对数正态 (lognormal) 分布(图 3a)。在这一弹性模量分布下,对于转录爆发动力学参数的分布,包括转录爆发频率、转录爆发间隔时间 (time until burst) 以及转录爆发持续时间 (burst duration),模拟结果都与实验结果符合较好(图 3b-d)。

通过考察非平衡复杂环境下转录液滴的动力学行为,作者揭示了染色质弹性模量对控制转录凝聚物的形成和基因表达调控可能具有的重要作用。该工作于2024年3月15日发表于学术期刊《Proceedings of the National Academy of Sciences of the United States of America》,题目为“Heterogeneous elasticity drives ripening and controls bursting kinetics of transcriptional condensates”。链接:https://doi.org/10.1073/pnas.2316610121 。

图片

图 1:弹性介质中的生物分子凝聚物示意图。

图片

图 2:凝聚物生长动力学及可能对应的基因表达类型。横轴为凝聚物周围的弹性模量,纵轴为凝聚物的成核半径。

图片

图 3:细胞内弹性模量满足对数正态分布下,模拟与实验结果对比。


林杰课题组孟令羽(生命科学联合中心博士生)为第一作者,北京大学工学院毛晟研究员为该工作作出了重要贡献。该工作获得了科技部国家重点研发计划项目、国家自然科学基金委员会面上项目以及北大-清华生命科学联合中心的支持。


图片

林杰

北京大学前沿交叉学科研究院定量生物学中心研究员

北大-清华生命科学联合中心PI


邮箱:

linjie@pku.edu.cn


实验室主页:

http://cqb.pku.edu.cn/jlingroup  


研究领域:

1.    Quantitative biology and systems biology

Biological processes are complex and often out-of-equilibrium. Nevertheless, universal and quantitative laws often emerge at the cellular or populational level. One example is the constant protein and mRNA concentrations in a growing cell volume, generally valid for any proliferating cells. We are interested in finding these laws and understanding the underlying mechanisms using the language of physics. Our research interests are broad, including but not limited to gene expression, cell size regulation, and cell physiology. We seek to collaborate with experimentalists and test our ideas using actual data. Our ultimate goal is to find unifying mathematical frameworks to describe various biological processes.


2.    Soft living matter

Soft matter refers to materials easily deformed by thermal fluctuation and external forces, including polymers, liquid crystals, colloids, and many others. Living matter such as cells shares many similarities with soft matter: they can be easily deformed and exhibit complex rheological behaviors. A key feature that makes living matter fascinating is that they constantly consume energy and are out-of-equilibrium. Living matter also actively responds and adapts to the environment. We are interested in extending our knowledge of soft matter physics to living matter to gain deeper insights into non-equilibrium statistical physics and biology.





参考文献:

[1] A. A. Hyman, C. A. Weber, F. Jülicher, Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

[2] W. K. Cho et al., Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

[3] J. Berry, C. P. Brangwynne, M. Haataja, Physical principles of intracellular organization via active and passive phase transitions. Rep. Progress Phys. 81, 046601 (2018).

[4] X. Wei, J. Zhou, Y. Wang, F. Meng, Modeling elastically mediated liquid-liquid phase separation. Phys. Rev. Lett. 125, 268001 (2020).

[5] D. S. Lee, N. S. Wingreen, C. P. Brangwynne, Chromatin mechanics dictates subdiffusion and coarsening dynamics of embedded condensates. Nat. Phys. 17, 531–538 (2021).

[6] Y. Zhang, D. S. W. Lee, Y. Meir, C. P. Brangwynne, N. S. Wingreen, Mechanical frustration of phase separation in the cell nucleus by chromatin. Phys. Rev. Lett. 126, 258102 (2021).

[7] K. A. Rosowski et al., Elastic ripening and inhibition of liquid-liquid phase separation. Nat. Phys. 16, 422–425 (2020).

[8] J. E. Henninger et al., RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 (2021).

[9] A. J. Larsson et al., Genomic encoding of transcriptional burst kinetics. Nature 565, 251–254 (2019).



图片