【参考文献】
1.Aplin J D, Ruane P T. Embryo–epithelium interactions during implantation at a glance[J]. Journal of cell science, 2017, 130(1): 15-22.
2.Bao M, Cornwall-Scoones J, Zernicka-Goetz M. Stem-cell-based human and mouse embryo models[J]. Current Opinion in Genetics & Development, 2022, 76: 101970.
3.Becker J S, Nicetto D, Zaret K S. H3K9me3-dependent heterochromatin: barrier to cell fate changes[J]. Trends in Genetics, 2016, 32(1): 29-41.
4.Chitrakar A, Noon M, Xiao A Z. Taming the transposon: H3K9me3 turns foe to friend in human development[J]. Cell Stem Cell, 2022, 29(7): 1009-1010.
5.Dietrich J E, Hiiragi T. Stochastic patterning in the mouse pre-implantation embryo[J]. 2007.
6.Gao R, Wang C, Gao Y, et al. Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos[J]. Cell stem cell, 2018, 23(3): 426-435. e5.
7.Gao Y, Chen J, Li K, et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming[J]. Cell stem cell, 2013, 12(4): 453-469.
8.Inoue A, Jiang L, Lu F, et al. Maternal H3K27me3 controls DNA methylation-independent imprinting[J]. Nature, 2017, 547(7664): 419-424.
9.Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming[J]. Cell, 2008, 132(4): 567-582.
10.Kang L, Wang J, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J]. Cell stem cell, 2009, 5(2): 135-138.
11.Le R, Kou Z, Jiang Y, et al. Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells[J]. Cell stem cell, 2014, 14(1): 27-39.
12.Le R, Huang Y, Zhang Y, et al. Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells[J]. Cell stem cell, 2021, 28(4): 732-747. e9.
13.Liu K, Xu X, Bai D, et al. Bilineage embryo-like structure from EPS cells can produce live mice with tetraploid trophectoderm[J]. Protein & Cell, 2023, 14(4): 262-278.
14.Liu W, Liu X, Wang C, et al. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing[J]. Cell discovery, 2016, 2(1): 1-15.
15.Liu X, Wang C, Liu W, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos[J]. Nature, 2016, 537(7621): 558-562.
16.Li R, Zhong C, Yu Y, et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures[J]. Cell, 2019, 179(3): 687-702. e18.
17.Li Y, Hermanson D L, Moriarity B S, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell stem cell, 2018, 23(2): 181-192. e5.
18.Li Y, Zheng C, Liu Y, et al. Inhibition of Wnt activity improves peri-implantation development of somatic cell nuclear transfer embryos[J]. National Science Review, 2023, 10(9): nwad173.
19.Luijkx D, Shankar V, van Blitterswijk C, et al. From mice to men: generation of human blastocyst-like structures in vitro[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 838356.
20.Gupta A, Lutolf M P, Hughes A J, et al. Bioengineering in vitro models of embryonic development[J]. Stem Cell Reports, 2021, 16(5): 1104-1116.
21.Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development[J]. Reproduction, 2015, 150(3): R109-R120.
22.Morris S A. Cell identity reprogrammed[J]. 2019.
23.Ries R J, Zaccara S, Klein P, et al. m6A enhances the phase separation potential of mRNA[J]. Nature, 2019, 571(7765): 424-428.
24.Rivron N C, Frias-Aldeguer J, Vrij E J, et al. Blastocyst-like structures generated solely from stem cells[J]. Nature, 2018, 557(7703): 106-111.
25.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. cell, 2006, 126(4): 663-676.
26.Themeli M, Kloss C C, Ciriello G, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy[J]. Nature biotechnology, 2013, 31(10): 928-933.
27.Wang C, Liu X, Gao Y, et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development[J]. Nature cell biology, 2018, 20(5): 620-631.
28.Wei J, Yu X, Yang L, et al. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development[J]. Science, 2022, 376(6596): 968-973.
29.Wu Y, Xu X, Qi M, et al. N 6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition[J]. Nature cell biology, 2022, 24(6): 917-927.
30.Xiang Y, Zhang Y, Xu Q, et al. Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency[J]. Nature genetics, 2020, 52(1): 95-105.
31.Xu R, Li S, Wu Q, et al. Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos[J]. Cell Stem Cell, 2022, 29(7): 1051-1066. e8.
32.Xu Y, Zhao J, Ren Y, et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential[J]. Cell Research, 2022, 32(6): 513-529.
33.Yang G, Zhang L, Liu W, et al. Dux-mediated corrections of aberrant H3K9ac during 2-cell genome activation optimize efficiency of somatic cell nuclear transfer[J]. Cell stem cell, 2021, 28(1): 150-163. e5.
34.Yang H, Bai D, Li Y, et al. Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in pre-implantation embryo[J]. Nature Cell Biology, 2022, 24(5): 783-792.
35.Yang M, Yu H, Yu X, et al. Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells[J]. Cell Stem Cell, 2022, 29(3): 400-418. e13.
36.Zhang P, Zhai X, Huang B, et al. Highly efficient generation of blastocyst-like structures from spliceosomes-repressed mouse totipotent blastomere-like cells[J]. Science China Life Sciences, 2023, 66(3): 423-435.