参考文献
1 Yassa, M. A. & Stark, C. E. Pattern separation in the hippocampus. Trends Neurosci 34, 515-525 (2011). https://doi.org/10.1016/j.tins.2011.06.006
2 Guzowski, J. F., Knierim, J. J. & Moser, E. I. Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44, 581-584 (2004). https://doi.org/10.1016/j.neuron.2004.11.003
3 McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the 'cognitive map'. Nat Rev Neurosci 7, 663-678 (2006). https://doi.org/10.1038/nrn1932
4 Bonaguidi, M. A., Song, J., Ming, G. L. & Song, H. A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol 22, 754-761 (2012). https://doi.org/10.1016/j.conb.2012.03.013
5 Groisman, A. I., Yang, S. M. & Schinder, A. F. Differential Coupling of Adult-Born Granule Cells to Parvalbumin and Somatostatin Interneurons. Cell Rep 30, 202-214 e204 (2020). https://doi.org/10.1016/j.celrep.2019.12.005
6 Gu, Y. et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15, 1700-1706 (2012). https://doi.org/10.1038/nn.3260
7 Laplagne, D. A. et al. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 4, e409 (2006). https://doi.org/10.1371/journal.pbio.0040409
8 Temprana, S. G. et al. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 85, 116-130 (2015). https://doi.org/10.1016/j.neuron.2014.11.023
9 Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645-660 (2008). https://doi.org/10.1016/j.cell.2008.01.033
10 Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L. & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559-566 (2007). https://doi.org/10.1016/j.neuron.2007.05.002
11 Marin-Burgin, A., Mongiat, L. A., Pardi, M. B. & Schinder, A. F. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335, 1238-1242 (2012). https://doi.org/10.1126/science.1214956
12 Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184-187 (2004). https://doi.org/10.1038/nature02553
13 Danielson, N. B. et al. Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding. Neuron 90, 101-112 (2016). https://doi.org/10.1016/j.neuron.2016.02.019
14 McHugh, S. B. et al. Adult-born dentate granule cells promote hippocampal population sparsity. Nat Neurosci 25, 1481-1491 (2022). https://doi.org/10.1038/s41593-022-01176-5
15 Kropff, E., Yang, S. M. & Schinder, A. F. Dynamic role of adult-born dentate granule cells in memory processing. Curr Opin Neurobiol 35, 21-26 (2015). https://doi.org/10.1016/j.conb.2015.06.002
16 Mugnaini, M., Trinchero, M. F., Schinder, A. F., Piatti, V. C. & Kropff, E. Unique potential of immature adult-born neurons for the remodeling of CA3 spatial maps. Cell Rep 42, 113086 (2023). https://doi.org/10.1016/j.celrep.2023.113086
17 Knierim, J. J. & Zhang, K. Attractor dynamics of spatially correlated neural activity in the limbic system. Annu Rev Neurosci 35, 267-285 (2012). https://doi.org/10.1146/annurev-neuro-062111-150351
18 Barry, C., Hayman, R., Burgess, N. & Jeffery, K. J. Experience-dependent rescaling of entorhinal grids. Nat Neurosci 10, 682-684 (2007). https://doi.org/10.1038/nn1905
19 Yoon, K. et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat Neurosci 16, 1077-1084 (2013). https://doi.org/10.1038/nn.3450
20 Krupic, J., Bauza, M., Burton, S. & O'Keefe, J. Local transformations of the hippocampal cognitive map. Science 359, 1143-1146 (2018). https://doi.org/10.1126/science.aao4960
21 Butler, W. N., Hardcastle, K. & Giocomo, L. M. Remembered reward locations restructure entorhinal spatial maps. Science 363, 1447-1452 (2019). https://doi.org/10.1126/science.aav5297
22 Sanguinetti-Scheck, J. I. & Brecht, M. Home, head direction stability, and grid cell distortion. J Neurophysiol 123, 1392-1406 (2020). https://doi.org/10.1152/jn.00518.2019
23 Benas, S., Fernandez, X. & Kropff, E. Modeled grid cells aligned by a flexible attractor. Elife 12 (2024). https://doi.org/10.7554/eLife.89851
24 Jun, H. et al. Disrupted Place Cell Remapping and Impaired Grid Cells in a Knockin Model of Alzheimer's Disease. Neuron 107, 1095-1112 e1096 (2020). https://doi.org/10.1016/j.neuron.2020.06.023
25 Cacucci, F., Yi, M., Wills, T. J., Chapman, P. & O'Keefe, J. Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc Natl Acad Sci U S A 105, 7863-7868 (2008). https://doi.org/10.1073/pnas.0802908105
26 Rechnitz, O., Slutsky, I., Morris, G. & Derdikman, D. Hippocampal sub-networks exhibit distinct spatial representation deficits in Alzheimer's disease model mice. Curr Biol 31, 3292-3302 e3296 (2021). https://doi.org/10.1016/j.cub.2021.05.039
27 Altimiras, F. et al. Brain Transcriptome Sequencing of a Natural Model of Alzheimer's Disease. Front Aging Neurosci 9, 64 (2017). https://doi.org/10.3389/fnagi.2017.00064
28 Inestrosa, N. C. et al. Human-like rodent amyloid-beta-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiol Aging 26, 1023-1028 (2005). https://doi.org/10.1016/j.neurobiolaging.2004.09.016
29 Tarragon, E. et al. Octodon degus: a model for the cognitive impairment associated with Alzheimer's disease. CNS Neurosci Ther 19, 643-648 (2013). https://doi.org/10.1111/cns.12125
30 Mugnaini, M. et al. Spatial maps and oscillations in the healthy hippocampus of Octodon degus, a natural model of sporadic Alzheimer's disease. Sci Rep 12, 7350 (2022). https://doi.org/10.1038/s41598-022-11153-4